Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.027$
$w R$ factor $=0.072$
Data-to-parameter ratio $=7.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl cis-deisopropyldehydroabietate

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}$, a derivative of dehydroabietic acid formed by a Friedel-Crafts reaction between methyl dehydroabietate and aluminium trichloride, the fused cyclohexane rings exhibit classical chair and half-chair conformations.

Comment

Pine resin is a very abundant renewable source composed mainly of diterpene resin acids of the general formula $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{COOH}$. This raw material has a wide range of industrial uses and is also a source of fine chemicals (Zinkel \& Russell, 1989). Dehydroabietic acid derivatives have shown a broad spectrum of biological activities such as antifungal and tumour-inhibitory properties (Silvestre et al., 1998; Fonseca et al., 2004). Considerable interest has been devoted to this easily available compound as a starting material, as either the free acid or the ester, for the synthesis of other important natural or bioactive compounds, mainly through transformations that involve the benzylic or aromatic portions of the molecule (Roy et al., 2003).

(I)

The title compound, (I), is analogous to methyl 12-bromo-13,14-dinitrodeisopropyldehydroabietate (Pan et al., 2005), but without the substituents on the benzene ring (Fig. 1). The fused rings A (atoms $\mathrm{C} 1-\mathrm{C} 6)$ and $B(\mathrm{C} 5-\mathrm{C} 9 / \mathrm{C} 14)$ adopt chair and half-chair conformations, respectively. Both the ester at C 1 and the methyl group at C5 occupy the axial positions on the cyclohexyl ring. The bond lengths and angles in the molecule are comparable to those in methyl 12-bromo-13,14dinitrodeisopropyldehydroabietate (Pan et al., 2005) and are in normal ranges (Allen et al., 1987).

The result confirms that during Friedel-Crafts reaction of methyl dehydroabietate, there is cleavage of ring B and formation of the intermediate carbenium ion. The carbenium ion has two steric modes of interaction with the benzene ring, so it is not surprising that bond formation occurs on the other side of ring A, thus creating the cis-product (Baleizão et al., 2004). The packing pattern of molecules is the same as in methyl-12-benzoyl-dehydroabietate (Li et al., 2006).

Received 31 May 2006
Accepted 27 June 2006

[^0]

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-labelling scheme. H atoms are represented by small spheres of arbitrary radius.

Experimental

Aluminium trichloride (100.4 mmol) was added carefully to a solution of methyl dehydroabietate $(17.1 \mathrm{mmol})$ in toluene $(71.7 \mathrm{ml})$ with vigorous stirring under nitrogen at room temperature for 24 h . The resulting mixture was poured into ice-water. The separated organic layer was then washed with water and dried with anhydrous magnesium sulfate. The aqueous layer was extracted with dimethyl ether, washed with water and dried with anhydrous magnesium sulfate. The organic layers were evaporated to dryness. The residue obtained was dissolved in light petroleum, treated with charcoal and filtered after 24 h . The solution was dried and evaporated leaving a yellow gum. Compound (I) was obtained as colourless crystals (yield $1.63 \mathrm{~g}, 35 \%$, m.p. $363.4-364.3 \mathrm{~K}$) by recrystallization from absolute methanol.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \\
& M_{r}=272.37 \\
& \text { Monoclinic, } P 2_{1}{ }_{1} \\
& a=8.459(2) \AA \\
& b=7.4681(19) \AA \\
& c=11.701(3) \AA \\
& \beta=95.173(5)^{\circ} \AA \\
& V=736.1(3) \AA^{\circ}
\end{aligned}
$$

Data collection

> Rigaku Mercury diffractometer ω scans
> Absorption correction: multi-scan \quad (Jacobson, 1998)
> $\quad T_{\min }=0.784, T_{\max }=0.978$

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0435 P)^{2}\right.
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.072$
$S=1.05$
1451 reflections
185 parameters
H -atom parameters constrained

H atoms bound to C atoms were positioned geometrically and included in the refinement in the riding-model approximation $(\mathrm{C}-\mathrm{H}$ $=0.95,0.98,0.99$ and $1.00 \AA$ for aromatic, methyl, CH_{2} and CH groups, respectively) and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for all others.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors thank the National Natural Science Foundation of China (Nos. 20362002 and 20442005), the 100 Young and Middle-Aged Disciplinary Leaders in Guangxi Higher Education Institutions and the Science Foundation of Guangxi Province (No. 0575046) as well as the Foundation of Guangxi Universities of the People's Republic of China.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Baleizão, C., Pires, N., Gigante, B., Curto, M. \& João, M. (2004). Tetrahedron Lett. 45, 4375-4377.
Fonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. \& Clercq, E. C. (2004). Bioorg. Med. Chem. 12, 103-112.

Jacobson, R. (1998). Private Communication to Rigaku Corporation, Tokyo, Japan.
Li, F.-Y., Pan, Y.-M., Wang, H.-S., Chen, Z.-F. \& Zhang, Y. (2006). Acta Cryst. E62, o1895-o1897.
Pan, Y.-M., Zhang, Y., Wang, H.-S., Tong, B.-H., Chen, Z.-F. \& Zhang, Y. (2005). Acta Cryst. E61, o3003-o3005.

Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2000). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Roy, A., Paul, T., Drew, M. G. B. \& Mukherjee, D. (2003). Tetrahedron Lett. 44, 4835-4837.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Silvestre, A. J. D., Monteiro, S. M. C., Silva, A. M. S., Cavaleiro, J. A. S., Felíix, V. M. S., Ferreira, P. \& Drew, M. G. B. (1998). Monatsh. Chem. 129, 1183-1197.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zinkel, D. F. \& Russell, J. (1989). Naval Stores - Production, Chemistry and Utilization. New York: Pulp Chemicals Association.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

